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The Electrostatic Potential

In this work, we are developing a stable, accurate, and fast method for
calculating the electrostatic potential on a grid. We calculate it by using
the operator solution to the Poisson equation:
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The Integration Technique

For the integral over R?
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C. Predescu, J. Theor. Comp. Chem. 5:255, 2006.

For the integral over (3
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Features of the technique

e This technique is stable (positive charge distributions will produce
positive potentials at all levels of approximation).

e Because of the iterative nature of this technique, we can use an
initial guess potential instead of the initial charge distribution in
order to speed up the computation.

e We also avoid the need for excessively large grids by using
Beck’s suggestion to calculate the potential on the frontier exactly.

e The technique 1s parallelizable on distributed memory machines
with preservation of scaling (domain decomposition).

T. L. Beck. Rev. Mod. Phys. 72:1041, 2000.




Discrete Charge Distributions

To test this technique, several discrete charge distributions have been used.
A simple monopole, with charge +1.0, is the first example. Because the 1/r
fall-off of the monopole potential is extremely slow, this is expected to be
the worst-case scenario for this technique.

Dipoles have also been studied, with unit charges of opposite sign separated
by 2.0 units of distance. Larger separations were also explored with essen-
tially the same results.

Finally, a quadrupole with a positive central charge (+2.0) and negative unit
charges at 1.0 units from the center was studied.

All of these systems were studied in a cube with side length 15.0 units, with
173, 333, 493, 65°, 813, and 97° total gridpoints.




Accuracy of the Technique
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Accuracy
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Trotter index

Timing of the Technique

Scaling of the Trotter Time

25000

20000 |-

15000

10000

T T T
Monopole

Quadrupole
Dipole

B

— 1 1 1

200000 400000 600000 SO0000

gndpoints

Scaling of the Trotter Index

le+06

] I
Monopole

Quadrupole

Dipole

1 | |

200000 400000 HOOON) S00000

gridpoints

le+06

The timing of this technique has been explored
in what is expected to be the worst case sce-
nario. The “guess” potential is set to the charge
distribution. The convergence criterion was
a maximum change of 107® over ten Trotter
steps.

Both the Trotter iteration and the calculation
of the exact values on the frontier take O(n®*?)
time. However, the calculation of the fron-
tier (naively implemented) takes 2 or 3 times
as long as the Trotter iteration (converging to
107®) in measured CPU time.

As expected, the monopole gives the slowest
convergence, because of its long-range effects.
The dipole converges fastest.




Future Directions

e Application of fourth-order integration techniques for improved
accuracy

e Use of guess potentials to decrease number of iterations required
for convergence

e Explore use of multigridding with this technique

e This technique 1s a step in a larger project to use the density
matrix formalism for linearly scaling electronic structure
calculations
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