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Exercise 1. If the general solution to a differential equation is y(x) = Ax2 +
Bx + C and it is subject to the initial conditions y(0) = 5, y′(0) = 2, and
y′′(0) = 1, then what are A, B, and C?

We just need to apply each of the boundary conditions. For the boundary
condition y(0) = 5 we have

A(0)2 + B(0) + C = C = 5

Since y′(x) = 2Ax + B, the second initial condition gives us

2A(0) + B = B = 2

Finally, y′′(x) = 2A, so the last initial condition gives

2A = 1 =⇒ A =
1
2

Exercise 2. Let’s assume that we’ve already found that the general solution
to a differential equation is y(x) = A cos(λx) + B sin(λx). Now we will subject
this system to several boundary conditions:

1. If the system is constrained by the boundary condition y(0) = 0, which
variable is fixed, and what does y(x) become?

2. Using your the new form of y(x), which variable is fixed by the boundary
condition y(L) = 0 for an arbitrary L? [Hint : you don’t want to end up
with the “trivial” solution of y(x) = 0.] What is now the new solution for
y(x)?

3. Now think carefully about your second answer. Did you account for ev-
ery possible value for which y(L) = 0? Since our initial function is an
oscillatory function, there will be an infinite number of these. Introduce
an integer variable n such that you account for all the possibilities. Write
down the new form of y(x).

4. You should only have one parameter still undetermined from the original
general solution. Let’s fix that parameter by requiring that it satisfy the
boundary condition

∫ L

0
dx y2(x) = 1. What is your end result for y(x)?
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[Hint: take another look at this exercise when you deal with the particle in a
box.]

By difficulty, this should be an Advanced exercise, but it is so fundamentally
important to quantum mechanics that I hope everyone will work through it.

Let’s follow the order in the problem:

1. With the boundary condition y(0) = 0, we have

0 = A cos(0) + B sin(0)
= A

so the parameter A is fixed to be zero, and the new equation is y(x) = B sin(λx).

2. Now, with y(x) = B sin(λx), we want to fix y(L) = 0. That is, we want
to find the solution such that

0 = B sin(λL)

There are two ways we could do this: if we set B = 0, the problem is
solved. Unfortunately, that also gives us the trivial solution y(x) = 0
which is generally not going to be the physical solution. So instead we
want to find λ such that sin(λL) = 0. Again, we don’t want λ = 0, because
that would give us the trivial solution. So we take λ = π/L, which will
clearly work since sin(π) = 0. In this part, we fixed λ, and a new solution
is y(x) = B sin(πx/L).

3. What we did in part 2 clearly gives us a solution to the problem, but
is it the only solution? If λ = π/L works, why not λ = 2π/L? Or
λ = 3π/L? In reality, all of these work, and so we should really put in a
positive integer n and say that λ = nπ/L. Although this may seem like
an unimportant mathematical detail, we’ll see in exercise 9 that this is
reason energy levels are quantized in the particle in a box. Make sure that
makes sense to you: it’s really important. Anyway, the new solution after
all of this is y(x) = B sin(nπx/L).

4. One variable left, one boundary condition to satisfy. We’ll be fixing B by
solving

1 =
∫ L

0

dxB2 sin2
(nπ

L
x
)

The reasonable folks will look that up in a table of integrals. The less
reasonable folks (like me) will solve it by hand. To do that, let’s first
make the substitution u = nπ

L x, which also gives us dx = L
nπ du and
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changes the integral to:

1 = B2 L

nπ

∫ nπ

0

du sin2(u) = B2 L

nπ

∫ nπ

0

du sin(u) sin(u)

= B2 L

nπ

∫ nπ

0

du
1
2

(cos(u− u)− cos(u + u))

= B2 L

nπ

∫ nπ

0

du
1
2

(1− cos(2u))

= B2 L

nπ

1
2

(∫ nπ

0

du −
∫ nπ

0

du cos(2u)
)

= B2 L

2nπ

(
nπ +

(
1
2

sin(2u)
)]nπ

0

)
= B2 L

2nπ
(nπ + 0− 0) = B2 L

2

That integral can also be done by converting to complex numbers, or by
noting that the integral is over n periods, comparing the integral over of
a period of sin2(θ) with that of cos2(θ), and by taking the integral of the
relation sin2(θ) + cos2(θ) = 1. I’ll leave the details of that method to the
curious.

However you get it, the result is that B =
√

2
L . This gives us a final

solution (wavefunction of the particle in a box) of y(x) =
√

2
L sin

(
nπ
L x
)
.

Exercise 3. Confirm that y = c eax satisfies the differential equation y′ = ay.
That is, plug the solution function into the differential equation and show that
it works.

This is just a matter of sticking the solution into the differential equation:

d
dx

(c eax) = ac eax = ay

Exercise 4. Does this solution also work if a is negative?

Let’s change a to − |a| in the result from the previous exercise:

d
dx

(
c e−|a|x

)
= − |a| c eax = − |a| y

So it still works fine.

Exercise 5. Using the method from the previous section, find this solution.
Then verify it by testing the solution in the original differential equation.
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Just as in the previous section, we have:

dy

dx
= f(x) y

dy

y
= dx f(x)∫

dy
1
y

=
∫

dx f(x)

ln(y) =
∫

dx f(x) + c1

y = c e
R

dx f(x)

The constant is added in to handle the constant of integration from the integral
of f(x).

Exercise 6. Verify that y(x) = c e
√

a x is a solution to y′′ = ay. What about
y′′ = −ay? What is α such that y(x) = c eαx is a solution to y′′ = −ay?

To verify, once again we just plug and chug:

d2

dx2

(
c e

√
a x
)

=
d
dx

(√
a c e

√
a x
)

=
√

a
√

a c e
√

a x

= ay

In order to find α, we’ll take the second derivative of the function:

y′′ = α2c eαx = α2y

In order for this to satisfy the differential equation y′′ = −ay, we must therefore
have

α2y = −ay =⇒ α2 = −a

Finally, we have:
α =

√
−a = i

√
a

Exercise 7. Show that the solution y(x) = c e
√
−a x is not linearly indepedent

of the solution y(x) = A cos(
√

a x) + B sin(
√

a x). That is, find A and B such
that the two solutions are equal.

Remembering Euler’s formula, we have:

y(x) = c e
√
−a x

= c ei
√

a x

= c
(
cos(

√
a x) + i sin(

√
a x)

)
= c cos(

√
a x) + ic sin(

√
a x)

From that, we can identify A = c and B = ic in A cos(
√

a x) + B sin(
√

a x).

4



Exercise 8. Verify that y(x) = A cos(
√

a x) + B sin(
√

a x) is a solution to the
differential equation y′′ = −ay. Now what about y′′ = ay? Find α such that
y(x) = A cos(αx) + B cos(αx) satisfies y′′ = ay.

As always, to verify a solution to a differential equation, we just plug and chug.

d2

dx2

(
A cos(

√
a x) + B sin(

√
a x)

)
=

d
dx

(
−
√

aA sin(
√

a x) +
√

aB cos(
√

a x)
)

=
√

a
d
dx

(
−A sin(

√
a x) + B cos(

√
a x)

)
=
√

a
(
−
√

aA cos(
√

a x)−
√

aB sin(
√

a x)
)

= −a
(
A cos(

√
a x) + B sin(

√
a x)

)
= −ay

Now we find α, again by taking the derivatives of the function:

y′′ = −α2 (A cos(αx) + B sin(αx)) = −α2y

Setting this equal to the differential equation gives us y′′ = ay = −α2y =⇒
a = −α2. From there, we get

α =
√
−a = i

√
a

Exercise 9. Suppose that we have the differential equation

−~2

2m
Ψ′′ = EΨ

with the boundary conditions Ψ(0) = Ψ(L) = 0. What are allowed values for
E? [Hint: this is the particle in a box. See exercise 2.]

We can quickly rearrange the equation above to give us the differential equation

Ψ′′ = −2mE

~2
Ψ

This in turn gives us the solution

Ψ(x) = A cos

(√
2mE

~2
x

)
+ B sin

(√
2mE

~2
x

)
From exercise 2 we know that the boundary values given will require that√

2mE

~2
=

nπ

L

Solving for E, we obtain

E =
n2π2~2

2mL2

Notice again that the quantization of energy levels comes about because of the
boundary conditions, and the existence of multiple energy levels (the introduc-
tion of n) comes about because the wavefunction has multiple zeros (that is,
there is more that one λ such that sin(λL) = 0).
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