Monodromy matrix calculation by the precision finite difference method David W.H. Swenson and William H. Miller

Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley and Chemical Sciences Division, Lawrence Berkeley National Laboratory

Introduction

The monodromy (or stability) matrix is defined as the derivative of a time-evolved coordinate in phase space (coordinate of either position or momentum) with respect an initial coordinate in phase space. That is

$$
\mathbf{M}_{i j}=\frac{\partial \xi_{i}(t)}{\partial \xi_{j}(0)}
$$

Calculating the monodromy matrix is an essential part of the "stability analysis" required by many methods in semiclassical dynamics. The precision finite difference method is a new way to calculate the monodromy matrix which
requires neither calculation of the Hessian nor propagation by matrix requires neither calculation of the Hessian nor propagation by matrix
multiplication. Here we introduce this method and compare it to other ways of multiplication. Here, we introduce this method and compare it to other ways of calculating the monodromy matrix

Pre-Existing Methods

Direct Propagation Method

One of the most common ways to calculate the monodromy matrix is by calculating its time derivative and using standard molecular dynamics integrators to propagate through time. The time derivative is given by

$$
\left(\begin{array}{cc}
\dot{M}_{q q} & \dot{M}_{q p} \\
\dot{M}_{p q} & \dot{M}_{p p}
\end{array}\right)=\left(\begin{array}{cc}
0 & \mathbf{m}^{-1} \\
-\nabla \nabla V & 0
\end{array}\right)\left(\begin{array}{ll}
M_{q q} & M_{q p} \\
M_{p q} & M_{p p}
\end{array}\right)
$$

for a Hamiltonian of the form $p^{2} / 2 m+V(x)$. This method has the disadvantages of requiring the Hessian, and of requiring matrix multiplication to calculate the time derivative. However, it should be effectively exact, and we shall use is as the exact result for purposes of error comparisons.
Scaling: $O\left(F^{3}\right)$, plus Hessian

Nä̈ve Finite Difference Method
The definition of the monodromy matrix invites an attempt at a naïve finite difference approximation. Start with initial trajectory $X(t)$. For each dimension j in phase space, run an auxiliary trajectory $Y_{i}(t)$. Then the monodromy matrix can be calculated by finite difference.
However, this method is expected to fail for chaotic trajectories.
Scaling: $O\left(F^{2}\right)$, plus auxiliary trajectories

Garashchuk \& Light's Method
Garashchuk and Light proposed a way of calculating the monodromy matrix without the Hessian. ${ }^{1}$ They observed that the monodromy matrix is unitary; that is:
$\mathbf{M}_{t_{0} \rightarrow t_{2}}=\mathbf{M}_{t_{0} \rightarrow t_{1}} \mathbf{M}_{t_{1} \rightarrow t_{2}}$
Their suggestion was to calculate short-time monodromy matrices by the naïve finite difference method, and $\mathbf{M}(n \tau)=\prod^{n-1} \mathbf{M}_{i \tau \rightarrow(i+1) \tau}^{(\mathrm{FD})} \quad \begin{aligned} & \text { then getting the long-time result by } \\ & \text { multiplying the short-time matrices }\end{aligned}$ multiplying the short-time matrices
together. However, this still requires many matrix multiplications.
Scaling: $O\left(F^{3}\right)$, plus auxiliary trajectories

The Precision Finite Difference Method

Scaling: $O\left(F^{2}\right)$, plus proxy trajectories

Derivation of Precision Rescaling ${ }^{2}$

Define the solution operator $\Phi_{t}(X(0)) \equiv X(t)$ and let $\delta_{j} x(t)=Y(t)-X(t)$ Expanding $\delta_{j} x(t)$ to first order in $\delta_{j} x(0)$ we obtain:

$$
\delta_{j} x(t) \approx \Delta \delta_{j} x(0) \quad \text { where } \Delta=\frac{\partial \Phi_{t}(X(0))}{\partial X(0)}
$$

Take another trajectory in the linear regime, $\hat{Y}_{j}(t)$, where $\delta_{j} \hat{x}(0)=c_{0} \delta_{j} x(0)$ The same analysis applies, which means that:

$$
{ }_{j} \hat{x}(t) \approx \Delta \delta_{j} \hat{x}(0)=\Delta c_{0} \delta_{j} x(0) \approx c_{0} \delta_{j} x(t)
$$

This result means that the ratio of the displacement of two trajectories is constant in the linear regime. Therefore, the larger displacement can be used as a proxy for the smaller displacement. By repeatedly rescaling to follow proxy trajectories in the linear regime, we can extrapolate to an arbitrarily small initial displacement

Application: The Hénon-Heiles Potential

(20.

Results

Results shown are percent error in the magnitude of the Herman-Kluk prefactor:

Conclusions

The precision finite difference (PFD) method has better computational scaling than either Garashchuk \& Light's method or direct propagation.
For non-periodic (typical) trajectories, PFD is more accurate than naïve finite difference when rescaling is frequent enough
Element-by-element, the PFD monodromy matrix tends to be on the order of or better than the naïve method.
PFD is not as good for the A-type periodic trajectories (after several hundred periods). Other classes of periodic trajectories will be tested
Naïve finite difference does quite well
Unlike direct propagation or Garashchuk \& Light's method, the PFD monodromy matrix can be calculated column by column.

References

1. Garashchuk and Light. J. Chem. Phys. 113, 9390 (2000)
2. Garashchuk and Light. J. Chem. Phys. 113, 9390 (2000).
3. Grünwald, Dellago, and Geissler. J. Chem. Phys. 129, 194101 (2008)

This work was supported by the National Science Foundation Grant No. CHE-0809073 and by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy under Contract No. DE-AC02-05CH11231

