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Pre-Existing Methods

The Precision Finite Difference Method Application: The Hénon-Heiles Potential
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The Hénon-Heiles potential provides a 
challenging test system. It is a 2D 
potential with both stable and unstable 
trajectories. We used trajectories from 
two classes: non-periodic NP-type 
trajectories and periodic A-type  
trajectories (stable at low energy, 
unstable at high energy). Both begin at 
the origin with kinetic energy 
insufficient to cross the barrier.
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The precision finite difference 
method makes a finite difference 
approximation using a displace-
ment smaller than would be possible 
for the naïve method. The trick is to 
use a trajectory with a larger 
displacement as a proxy for a 
t ra jectory with a smaller 
displacement (so long as both are 
within the linear regime.) {δjx(0)
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Derivation of Precision Rescaling2

The same analysis applies, which means that:

Define the solution operator and letΦt(X(0)) ≡ X(t) δjx(t) = Y (t)−X(t)
Expanding to first order in we obtain:δjx(t) δjx(0)

Take another trajectory in the linear regime, , where Ŷj(t) δj x̂(0) = c0δjx(0)

δj x̂(t) ≈ ∆δj x̂(0) = ∆c0δjx(0) ≈ c0δjx(t)

δjx(t) ≈ ∆δjx(0) ∆ =
∂Φt(X(0))

∂X(0)where

This result means that the ratio of the displacement of two trajectories is constant 
in the linear regime. Therefore, the larger displacement can be used as a proxy for 
the smaller displacement. By repeatedly rescaling to follow proxy trajectories in 
the linear regime, we can extrapolate to an arbitrarily small initial displacement.

The monodromy (or stability) matrix is defined as the derivative of a time-evolved 
coordinate in phase space (coordinate of either position or momentum) with 
respect an initial coordinate in phase space. That is:

Calculating the monodromy matrix is an essential part of the “stability analysis” 
required by many methods in semiclassical dynamics. The precision finite 
difference method is a new way to calculate the monodromy matrix which 
requires neither calculation of the Hessian nor propagation by matrix 
multiplication. Here, we introduce this method and compare it to other ways of 
calculating the monodromy matrix.

Mij =
∂ξi(t)
∂ξj(0)

Concept

This idea was previously developed 
by Grünwald, Dellago, and Geissler 
for their “precision shooting” 
method in transition path sampling.2

Introduction

One of the most common ways to calculate the monodromy matrix is by 
calculating its time derivative and using standard molecular dynamics integrators 
to propagate through time. The time derivative is given by

Direct Propagation Method
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for a Hamiltonian of the form p2/2m + V(x). This method has the disadvantages of 
requiring the Hessian, and of requiring matrix multiplication to calculate the time 
derivative. However, it should be effectively exact, and we shall use is as the 
exact result for purposes of error comparisons.

Scaling: O(F3), plus Hessian

Algorithm

Initialization

Finite Diff. 
Monodromy

Given X(0), {σj}, {δjx(1)(0)}, {c(0)
j }

k = 1 ; t = 0

Propagate trajectory X by one time step

Propagate trajectory Ŷ (k)
j by one time step
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Calculate prefactor
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Results shown are percent error in the magnitude of the Herman-Kluk prefactor:
|CHK(t)| = |det (Mqq + Mpp + iMpq − iMqp)|

Conclusions
1. The precision finite difference (PFD) method has better computational scaling 

than either Garashchuk & Light's method or direct propagation.
2. For non-periodic (typical) trajectories, PFD is more accurate than naïve finite 

difference when rescaling is frequent enough.
3. Element-by-element, the PFD monodromy matrix tends to be on the order of 

or better than the naïve method.
4. PFD is not as good for the A-type periodic trajectories (after several hundred 

periods). Other classes of periodic trajectories will be tested.
5. Naïve finite difference does quite well.
6. Unlike direct propagation or Garashchuk & Light’s method, the PFD 

monodromy matrix can be calculated column by column.

Naïve Finite Difference Method

Yj(t)

X(t){δjx(0)

M(FD)
ij (t) =

(Yj(t)−X(t))i

δjx(0)

The definition of the monodromy 
matrix invites an attempt at a naïve 
finite difference approximation. Start 
with initial trajectory X(t). For each 
dimension j in phase space, run an 
auxiliary trajectory Yj(t). Then the 
monodromy matrix can be calculated 
by finite difference.

However, this method is expected to 
fail for chaotic trajectories.

Scaling: O(F2), plus auxiliary trajectories

Garashchuk & Light’s Method
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Garashchuk and Light proposed a way 
of calculating the monodromy matrix 
without the Hessian.1 They observed 
that the monodromy matrix is unitary; 
that is:

Their suggestion was to calculate 
short-time monodromy matrices by the 
naïve finite difference method, and 
then getting the long-time result by 
multiplying the short-time matrices 
together. However, this still requires 
many matrix multiplications.

Mt0→t2 = Mt0→t1Mt1→t2

Scaling: O(F3), plus auxiliary trajectories

Scaling: O(F2), plus proxy trajectories
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Frequent rescaling works at high and low energies
Infrequent rescaling fails at high and low energies

NP-type trajectories:
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Even frequent rescaling fails at long timeA-type trajectories:


